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1. INTRODUCTION

In Part I [Mudaliar, 1993]1 we obtained the dyadic Green's
function (DGF) of a biaxially anisotropic medium for the unbounded case.
It may be noted that the results obtained there are in a form very
convenient for deriving the DGF's for anisotropic layered structures.
Indeed that was one of the underlying motives of Part I. We consider in
this report the two-layer case.

The plan of the report is as follows. In Section 2 we briefly
describe the geometry of the problem. We formulate the solutions of the
problem in Section 3. In order to facilitate the evaluation of the
coefficients of the DGF's we introduce amplitude vectors and adopt a
matrix method in Section 4. The procedure is completed in Section 5 by
deriving various half-space Fresnel coefficients. Finally the report

concludes in Secion 6.
2. GEOMMETRY OF THE PROBLEM

The geometry of the problem is shown in Figure 1. It consists of three
regions: Region 0 ( z > 0 ) is an isotropic medium with permittivity £
Region 1 ( 0 > z > ~ d ) is the biaxially anisotropic medium with
permittiQity € and Region 2 ( zv< — d ) is an isotropic medium of
permittivity €y All the three regions have the same permeability u. In
this coordinate system the permittivity ¢ is represented by the following

-

symmetric matrix.




where the elements ¢, are explained in (3) of Part I.

3. FORMULATION

We have a unit impulse electric current source in Region 0 away from
the boundary. Our interest is to find the DGF's: Eoo(f,?‘), Elo(f,?') and
Ezo(f,f'). Here as usual the second subscript denotes the region where
the source is located while the first subscript denotes the region
éontaining the observation point. In order to obtain the above DGF's we
need to solve the system of equations given in Appendix A. Baﬁed on the
knowledge about the structure of the DGF for the unbounded case obtained
in Part I and that of the DGF’'s for the layered isotropic media’ we can

now construct solutions for our two-layer problem as follows.
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the horizontal and vertical polarizations, which are two characteristic
linear polarizations in an isotropic medium. 2 and g denote the
polarizations of the a-wave and the b-wave, which are two characteristic
(extraordinary) waves in a biaxially anisotropic medium. Note that the
superscripts + and — indicate the upward and downward propagating waves,
respectively. The task here is to determine the sixteen reflection and

transmission coefficients: R’s, A's, B’'s and X's.

4. MATRIX METHOD

The unknown coefficients appearing in (2), (3) and (4) can be
evaluated by using (A4) and (A5). But this is at best a tedius procedure;
moreover, the results thus obtained are in a very complicated form. We
therefore follow an alternative method’ in which we first express the
unknowns in terms of half-space Fresnel coefficients. Later in the next
section we evaluate the various half-space Fresnel coefficients.

In this procedure we denote the amplitude vectors of various waves as
P, q, i, 6, s (see Figure 2). These are two-element vectors whose
eléments are the characteristic components of the corresponding wave. For

example

where Py and p, are the amplitudes of horizontally and vertically

polarized components of the p-wave in an isotropic medium. Similarly

F -




where P‘ and Pb are the a- and b- components of the P-wave in a biaxially

anisotropic medium and so on.

the following equations
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Accordingly these amplitude vectors satisfy

reflection and transmission matrices defined as follows
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X0 = (11b)

Xaov  Tov

Rii exp [ 1(-—k:d+k:“)d ] kll)i exp [ i[-k:d+k:u]d ]

R, = 12 (12a)
12 R exp [ 1(42%a ] r exp [ i(52%E4a |
12 12 bd
- Xah exp [ i(_k:d-kZZ)d ] xbh exp [ i(—kz _kZZ]d ]
X9 = 12 (12b)

X.2 exp [ i(—k:d—kzz)d ] xtl)2 exp [ i(—k:d—kzz]d ]

Note that the exponential terms are included in (12) to take into account
the phase shift at the boundary, z = —d. For a given incident wave
corresponding to P, Equations (8) and (9) represent four equations for

four unknowns q, P, Q and §. The solution is readily obtained and is given

as follows.
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P =AF (13b)
Q -85 (13c)
s -Xp (13d)
where
- th th - - - - - - -1 =
R = . . - Ry + X R, (T-R R, ) Xy (14a)
\'4 vv
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A = N .- (T-R,E,) %y (14b)
b vb
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We note that through (14) we have represented all the unknown coefficients
in the two-layer DGF's in terms of half-space Fresnel coefficients. In the

uniaxial limit, i.e. when € ty and ¢2- 0, our results agree with those




of Lee and Konga. We shall take up the task of deriving explicit

expressions for these half-space Fresnel coefficients in the next section.

5. HALF-SPACE FRESNEL COEFFICIENTS

We notice that for our two-layer problem there are three situations

to consider.

SITUATION 1

Here we have free space in the region above the interface z = 0 and
the biaxially anisotropic medium in the region below (Figure 2). A plane
wave from above is incident on the interface. Depending on the

polarization of the incident wave there are two cases to consider.

(1) h-wave incidence

For this case the electric fields in the two regions may be

formulated as follows.

- A 1K, T ik, T A ik,.T
= - 0 01 A+ 0 01 N+ 0
Eo(r) h0 e + th ho e + th Vo © , z2>0 (15a)
—a _ ..b _
- A 1K T A ik Y
El(r) - Xha a e + th b e , 2<0 (15b)

The associated boundary conditions are given as follows.
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x El('f) at z =0 (16a)
A - A - -
zZ XV X Eo(r) - ZXVX El(r) at z = 0 (16b)

On substituting (15) in (16) we obtain the following solutions for the

Fresnel coefficients.

01 + +
th =- 1+ xha Va- ¥ xhb Vb- (172)

+

01 +
th - xha ha— + xhb hb-- (17b)

Xpa = " 2k, (B —hog ] /o (17¢)
Xp = = Zkg, (W - yr ) /a4 (174)

where all the unknown quantities are defined in Appendix C.

(ii) v-wave incidence

Here the electric fields in the two regions are formulated as follows.

- A_ iE.°F Ay ik, F Ay ik, °F
= o 0 01 "+ 0 01 ™+ 0
Eo(r) Vo © + R Vo © +R. h z>0 (18a)
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e , 2<0 (18b)

By substituting (18) in (16), we obtain the following solutions.

01 + +
R, =~ 1+ X, ha_ + X hb— (19a)
01 + +
th = NaVa T va Vb- (19b)
X -[(T -t )yt - (T4, ~T- ) +]/A+ (19¢)
va vtx vix ) Yo vty vx J -
X -—[ Ty ~Tm ) v = (Toay ~ T~ ) xt_ ]/ 8” (19d)
vb vtx vix ) Ya- vty vx a—
SITUATION 2

Here we have the biaxially anisotropic medium above the boundary z = 0O
and the isotropic medium 2 below it. A plane wave from above impinges on

the interface. There are two cases to consider depending upon the type of

the incident wave .

(i) a-wave incidence

12




The electric fields El and EZ in the two regions are formulated as

follows.
- -a . b _
— A iK8.T 1K%.F 1k F
E,(Y) —a e + R12 2+ e + R12 g+ e , z2>0
1 aa ab
- _ 12 A~ 1&2-r 12 A~ 1?20?
Ez(r) - xah h2 e + xav v, e ,z2<0

Substituting (20) in (16) we obtain the following solutions.

B2 - (e = e v ) /8

12 - - - +
Rab - ( Xat Ya— ~ Xa= Yat ] /8

12 12 - 12 - -
xah - Raava+ + Rabvb* +v -

av 12 - 12, - -
X2 = Ra:ha+ + Raihb+ + ha‘

where
J oo Jj_
eci ¢l ije * vii K22 M Tcie

for £={x,y}, ¢={a,b},{i,jl= (+,-]

All other quantities are given in Appendix C; but we have to replace

13
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k. by k

0z 2z°

(1) b-wave incidence

The electric fields El and E2 in the two regions are formulated as
follows.
- _ c._ ixb.¥ 12 A+ 1'12b-f 12 A+ ik?. T )
El(r) - e + Rbb b e + Rba a e ,z2>0 (23a)
- _ 12 A~ iEzof 12 ~ 122'?
Ez(r) - th h2 e + vV e ,2<0 (23b)

From (23) and (16) we obtain the following solutions.

12 12
Rbb - Raa
R%i - Riﬁ Replacements
a-+b (24)
12 12
Xoh ~ Xan b=>a

12 12

SITUATION 3

In this situation the geometry is the same as in Situation 1; the

only difference is that the wave is incident from below. Once again

14




B

there are two cases to consider.

(1) a-wave incidence

The electric fields in the two regions are formulated as

— ik, oT ik oF

Eo(f)-xahﬁge 0 +xav33e 0 ,z>0 (25a)
- Ay ik%.¥ A 1K%.F A 1K oF

El(f) -3a e + Raa a e + Rab e , 2<0 (25b)

Applying the boundary conditions (16), we have the following solutions.

R - R12

aa aa
R - R12 Repl t of

b ab eplacement o

Superscripts (26)
12

Xah - xah +
X - X12

av av

Besides the above replacements, also note the following changes: fii is

here defined by (A2) and in other equations k22 is replaced by ka'

(ii) b-wave incidence

15




The electric fields in the two regions are formulated as

- _ Ay ikoof Ay 1k0-f

Eo(t) - xbh ho e + va Vo € , Z2>0 (27a)
N K0 F A ixDeE A ix2eT

El(r) - e + Rbb b e + Rba a e , 2 <0 (27b)

From (27) and (16) we have the following solutions.

Rbb = Raa
Rba - Rab Replacements
a=>hb (28)
th - xah b-=>a
Yov = X
v av

It is to be noted that in the uniaxial limit, our results (17), (19),
(21), (24), (26) and (28) agree with corresponding results of Lee and

Kongs.

6. NUMERICAL EXAMPLE

One quantity of interest in our results is the reflection coefficient
of the two layer medium. To illustrate its characteristics we have taken

the following example. Region 0 is free space with permittivity ¢, while

0

16
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Region 2 has permittivity (6.O+1.006):0. The anisotropic medium is

characterised by the following permittivities: - (2.8+1.001)c0 , cy
(3.O+1.002)¢0, €, = (3.2+i.003)c0. The tilt angles are ¢1 = 20° and ¢2 -
40°. The azimuthal angle of incident wave is 45°. The thickness of the
layer is 1.0 m and the frequency is chosen as 10 GHz. In Figure 3a we have
plotted the reflectivities, r, = |th|2 + |th|2 and r = |va|2 + |th|2.
The behaviour here appears to be a familiar one. For small angles on
incidence we notice that I, =T, and there is a null (Brewster angle!) at
around 60° for r,. The anisotropic nature of the medium is not very
evident by looking at this reflectivity plot. This is perhaps the axis of
symmetry is very close to the incident plane. Next we consider the case
when ¢2 = 80°. Since the axis of symmetry is well away from the incident
plane the anisotropic behaviour is very apparent in Figure 3b. Just to
illustrate the contributions of like-polarised and cross-polarised
reflectivities to r, we have plotted ]va]2 and ]thjzin Figure 3c.
Perhaps in this example the cross-polarised reflectivity is rather small

compared to the like polarised reflectilvity. But the fact that there

exists cross-polarization is significant.
7. CONCLUSION

We have derived in this report the dyadic Green's function of a two
layer biaxially anisotropic medium. The formulation is based on the
solution for the unbounded case obtained in Part I. But the evaluation of
the various coefficients required the use of a matrix method which
expresses these two-layer coefficients in terms of half-space reflection

and transmission coefficients. This procedure is completed by deriving

17




explicit expressions for the various half-space Fresnel reflection and
transmission coefficients. To illustrate the computational simplicity we
have provided a numerical example where we have plotted the reflectivities

versus the incident angle.

18
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APPENDIX A

The DGF's satisfy the following equations

~ ¥ — 2 ~ > 1! - T Y — !
VX VX Gy(F,T') —wp g Goo(E T ) =T 6(F —T') (al)
- —_— - 2 - am —- =y
VxVx Glo(r,r') - wp e Glo(r,r ) =0 (A2)
- = =¢\ - 2 e FTF') =
VXV Xx Gzo(r,r ) wp e, Gzo(r,r ) 0 (a3)

where w is the angular frequency. The boundary conditions associated

with these DGF’'s are given as follows:

2 x Gpo(T.T) = 2 x Co(EE) atz=0 (Aba)
2XxVXxGC. (F,F') = 2 xVxG,(E,F) atz=0 {A4b)
0o'*’ 10'%"
2 xG. (FF) =~ 2xC.(FE,F) atz=-d (ASa)
10'% 20\
zZ XV x Glo(t,r ) zZ XV Xx Gzo(r,r ) at z d (ASb)
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APPENDIX B
(=5 0
(v 25 .84
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A N A A
. [ KPx (kPx 8) K% (KPx 8,) }
A + A
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AR (B7)
A
()
! - Q ( + cos ¢y, + sin ¥, sin ¢ ]
32 - & 27 8 1 2
+ 9 ( ¥ gl sin $2 + gz sin $1 cos ¢2 ] + Q cos ¢1 (B8)
cz(c - tx) 1/2
& = e (e — ¢€) (B9a)
y' 'z x

e (e — ¢ ) 1/2
Xz ] (B9b)

g, =~ [ Xz ¥y
2

cy(cz- ex)

For definiteness we have assumed in the above equations that € < cy < £,

A A
A~ 1 nax 31 nax 32
= ad Aa A * T A (B10a)
h | % 01| |e % 02|
A A A N
- 1 [ x(nbx 31) nbx(nbx °2)
y - v Mt R (B10b)
h |« X o, |k X o,]|
1 2
;g-/)kp+'z\k§d ., C=aorb (B11)
b —w {u-a) (B12)
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APPENDIX C

A i J i ]
el -i(nc-nc)/S
X ¥y x
where
J \ [ \
VL, if =+ — g
n ={n v}
¢ ={a b}
f h » +
n -1v-'—
J J J i
sci - hfi Tvif + vgi (- koz) h€ - Tgif
J
where §=\1x, y/
Si - hi vi - h1 vi
Xy Yy X
- i _ L1 i
TgiE kf gz kz CE
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Figure 1. Geometry of the Problem
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Figure 2. Amplitude Vectors of Waves in Two-Layer Medium
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